
[主观题]
证明:设β1,β2,...,βm为n维线性空间V中线性相关的向量组,但其中任意m-1个向量皆线
性无关。设有m个数
。则或者b1=b2=...=bm=0,或者b1,b2,...,bm皆不为零。在后者的情形,若有另一组数c1,c2,...,cm使
。



查看答案
第1题
设α1,α2,···,αm是n维欧氏空间V中一组向量,而
证明:当且仅当|△|≠0时,α1,α2,···,αm线性无关。
第2题
设A是n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
(1)计算并化简PQ;
(2)证明Q可逆的充要条件αTA-1α≠b。
第3题
设V为数域P上的n维线性空间,且V=L(α1,α2,...αn),
(1)证明{α1,α1+α2,...,α1+α2+...+αn}是V的一组基:
(2)若a∈V在基{α1,α2,...αn}下的坐标为(n,n-1,...,2,1),求α在基{α1,α1+α2,...,α1+α2+...+αn}下的坐标
第4题
完全二元树T有n个结点m条边.
(1)设其树叶数为l,证明m=2(l-1).
(2)设其分支结点数(含树根)为树叶数为l,证明l=k+1.
第5题
第7题
设n阶方阵A=(aij)的各行元之和为常数a,证明
(1)a为A的一个特征值是对应的特征向量;
(2)Am的每行元之和为am,其中m为正整数;
(3)若A可逆,则A-1的每行元之和为1/a。
第8题
第9题
设n阶方阵A=(aij)的各行元之和为常数a,证明
(1)a为A的一个特征值,是对应的特征向量;
(2)Am的每行无之和为am,其中m为正整教;
(3)若A可逆,则A-1的每行元之和为1/a.
第10题
设α1,α2,...,αn是n维线性空间V的一组基,A是一nxs矩阵。
证明:的维数等于A的秩。