
设ε1,ε2,...,εn是线性空间V的一组基,是V上的线性变换,证明:可逆当且仅当线性无关。
设ε1,ε2,...,εn是线性空间V的一组基,是V上的线性变换,证明:
可逆当且仅当
线性无关。

设ε1,ε2,...,εn是线性空间V的一组基,是V上的线性变换,证明:
可逆当且仅当
线性无关。
第1题
设α1,α2,...,αn是n维线性空间V的一组基,A是一nxs矩阵。
证明:的维数等于A的秩。
第2题
设V为数域P上的n维线性空间,且V=L(α1,α2,...αn),
(1)证明{α1,α1+α2,...,α1+α2+...+αn}是V的一组基:
(2)若a∈V在基{α1,α2,...αn}下的坐标为(n,n-1,...,2,1),求α在基{α1,α1+α2,...,α1+α2+...+αn}下的坐标
第3题
设V是复数域上的n维线性空间,而线性变换在基ε1,ε2,...,εn下的矩阵是一若尔当块。证明:
1)V中包含ε1的-子空间只有V自身;
2)V中任一非零-子空间都包含εn;
3)V不能分解成两个非平凡的-子空间的直和。
第4题
设α1,α2,···,αm是n维欧氏空间V中一组向量,而
证明:当且仅当|△|≠0时,α1,α2,···,αm线性无关。
第6题
设f(α,β)是n维线性空间V上的非退化对称双线性函数,对V中一个元素α,定义V*中一个元素α*:α*(β)=f(α,β),β∈V。
试证:1)V到V*的映射α→α*是一个同构映射;
2)对V的每组基ε1,...,εn,有V的唯一的一组基ε1',...,εn'使f(εi,εj')=δij;
3)如果V是复数域上n维线性空间,则有一组基η1,...,ηn,使ηi=ηi',i=1,...,n。
第7题
第8题
是n维线性空间V上的线性变换,证明:
1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则
的最小多项式是d(λ);
2)设的最高次的不变因子是d(λ),则
的最小多项式是d(λ)。
第9题
设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,
试证α1,α2,α3是V的一组基并求它的对偶基(用f1,f2,f3表出)。
第11题
设是数域P上n维线性空间V的一个线性变换,证明:
1)在P[x]中有一次数≤n2的多项式f(x),使
2)如果,那么
这里d(x)是f(x)与g(x)的最大公因式;
3)可逆的充分必要条件是,有一常数项不为零的多项式f(x)使