
对于0-1背包问题的解向量X,Xi=1表明选择物品1i。()

第1题
0-1背包问题描述如下;给定n种物品和一个背包.物品i的重量是wi,其价值为vi背包的容量为C.应如何选择装入背包的物品,使装入背包中物品的总价值最大?
在选择装入肯包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包.不能将物品i装入背包多次,也不能只装入部分的物品i.
0-1背包问题形式化描述如下:给定,要求n元0-1向量
,
使得
而且
达到最大.
算法设计:对于给定的n种物品的重量和价值,以及背包的容量,计算可装入背包的最大价值.
数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和c,n是物品数,c是背包的容量.接下来的1行中有n个正整数,表示物品的价值.第3行中有n个正整数,表示物品的重量.
结果输出:将计算的装入背包物品的最大价值和最优装入方案输出到文件output.txt
第2题
A.i表示物品的重量
B.C表示背包容量
C.xi=0表示编号为i的物品不被选择
D.求解目标是最大化装入背包内的物品的总价值
第5题
A.(1/2,1/3,1/4)
B.(1,2/15,0)
C.(0,2/3,1)
D.(0,1,1/2)
第6题
其中x0是给定的x(t)的初始值,xp0是任意给定的x(1)的初始值,fixed_:x0和fixed_xp0是与xp0同维数的列向量,其分量为1表示需要保留的初值,为0表示需要求解的初始值。若fixed_x0和fixed_xp0等于空矩阵[],表示允许所有的初值分量可以发生变化。分别用显式和隐式解法求下列微分方程的数值解
第7题
证明下列规划为凸规划:
问:该问题是否存在最优解?
其中A是一个mxn的矩阵,秩(A)=n。符号||x||2表示向量x的模的平方,即||x||2=xTx。
第8题
已知下列线性规划问题 min f=5x1—5x2—13x3 约束条件:—x1+x2+3x3 ≤ 20 12x1+4x2+10x3 ≤ 100 x1,x2,x3≥0 将问题化为标准型之后求解,最优值为-100,最终单纯形表如下表所示 迭代 次数 基变量 cB x1 x2 x3 x4 x5 b -5 5 13 0 0 2 x2 5 -1 1 3 1 0 20 x5 0 16 0 -2 -4 1 20 cj-zj 0 0 -2 -5 0 (1)写出其最优基矩阵B及其逆矩阵B^(-1); (2)当b2由100变为60时,最优解有什么变化? (3)x1的系数列向量由(-1,12)T变为(0,5)T的时候,最优解有什么变化? (4)增加一个约束条件x1+2x2+x3 ≤ 30最优解有什么变化?
第9题
设已知方程组Ax=b的精确解为x*=(100,-100)T。
(1)计算条件数
(2)取分别计算它的残余向量,本题的结果说明了什么问题?
第10题
问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果
,且对任意(u,V)∈E有u∈U或v∈U,就称U为图G的一个顶点覆盖.G的最小权顶点覆盖是指G中所含顶点权之和最小的顶点覆盖.
算法设计:对于给定的无向图G,设计一个优先队列式分支限界法,计算G的最小权顶点覆盖.
数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和m,表示给定的图G有n个顶点和m条边,顶点编号为1,2,...,n.第2行有n个正整数表示n个顶点的权.接下来的m行中,每行有2个正整数u和v,表示图G的一条边(u,v).
结果输出:将计算的最小权顶点覆盖的顶点权值和以及最优解输出到文件output.txt.文件的第1行是最小权顶点覆盖顶点权之和;第2行是最优解xi(1≤i≤n),xi=0表示顶点i不在最小权顶点覆盖中,xi=1表示顶点i在最小权顶点覆盖中.