重要提示:请勿将账号共享给其他人使用,违者账号将被封禁!
查看《购买须知》>>>
首页 > 建筑工程类考试> 房地产经纪人
网友您好,请在下方输入框内输入要搜索的题目:
搜题
拍照、语音搜题,请扫码下载APP
扫一扫 下载APP
题目内容 (请给出正确答案)
[判断题]

对于0-1背包问题的解向量X,Xi=1表明选择物品1i。()

答案
查看答案
更多“对于0-1背包问题的解向量X,Xi=1表明选择物品1i。()”相关的问题

第1题

问题描述:设计一个用回溯法搜索子集空间树的函数,参数包括结点可行性判定函数和上界函数等必
要的函数,并将此的数用于解0-1背包问题.

0-1背包问题描述如下;给定n种物品和一个背包.物品i的重量是wi,其价值为vi背包的容量为C.应如何选择装入背包的物品,使装入背包中物品的总价值最大?

在选择装入肯包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包.不能将物品i装入背包多次,也不能只装入部分的物品i.

0-1背包问题形式化描述如下:给定,要求n元0-1向量,使得而且达到最大.

算法设计:对于给定的n种物品的重量和价值,以及背包的容量,计算可装入背包的最大价值.

数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和c,n是物品数,c是背包的容量.接下来的1行中有n个正整数,表示物品的价值.第3行中有n个正整数,表示物品的重量.

结果输出:将计算的装入背包物品的最大价值和最优装入方案输出到文件output.txt

点击查看答案

第2题

关于0-1背包问题的下述形式化公式描述:下述说法不正确的是()。

A.i表示物品的重量

B.C表示背包容量

C.xi=0表示编号为i的物品不被选择

D.求解目标是最大化装入背包内的物品的总价值

点击查看答案

第3题

栈式分支限界法将活结点表以后进先出(LIFO)的方式存储于一个栈中.试设计一个解0-1背包问题的栈式分支限界法,并说明栈式分支限界法与回溯法的区别.

点击查看答案

第4题

试修改解装载问题和解0-1背包问题的优先队列式分支限界法,使其仅使用一个最大堆来存储活结点,而不必存储产生的解空间树.

点击查看答案

第5题

对于三个物体的背包问题,问题相关的数据为n=3,M=20,P=(25,24,15),W(18,15,10)。下面给出的四个可行解中,最好的是()。

A.(1/2,1/3,1/4)

B.(1,2/15,0)

C.(0,2/3,1)

D.(0,1,1/2)

点击查看答案

第6题

隐式微分方程求解。隐式微分方程就是不能转换成显式常微分方程组的微分方程,在Matlab中提供专门
的函数odel5i直接求解隐式微分方程。若隐式微分方程的形式为给定初始条件x(t0)=x0,(to)=x,则可以编写函数描述该隐式微分方程,然后调用命令就可以求解该隐式微分方程。其中,fun为Matlab函数描述隐式微分方程,[t0,tn]为微分方程的求解区间;x0为x(t0)的初始值,xp0为&(t)的初始值。但是隐式微分方程不同于-般的显式微分方程,求解之前,除了给定x(1)的初始值,还需要i(1)的初始值,xi(1)的初始值不能任意赋值,必须满足微分方程的相容性条件,否则将可能出现矛盾的初始值。通常使用函数decic求出这些未完全定义的初值条件,函数decie的使用格式为

其中x0是给定的x(t)的初始值,xp0是任意给定的x(1)的初始值,fixed_:x0和fixed_xp0是与xp0同维数的列向量,其分量为1表示需要保留的初值,为0表示需要求解的初始值。若fixed_x0和fixed_xp0等于空矩阵[],表示允许所有的初值分量可以发生变化。分别用显式和隐式解法求下列微分方程的数值解

点击查看答案

第7题

证明下列规划为凸规划:问:该问题是否存在最优解?其中A是一个mxn的矩阵,秩(A)=n。符号||x||2

证明下列规划为凸规划:

问:该问题是否存在最优解?

其中A是一个mxn的矩阵,秩(A)=n。符号||x||2表示向量x的模的平方,即||x||2=xTx。

点击查看答案

第8题

已知下列线性规划问题 min f=5x1—5x2—13x3 约束条件:—x1+x2+3x3 ≤ 20 12x1+4x2+10x3 ≤ 100 x1,x2,x3≥0 将问题化为标准型之后求解,最优值为-100,最终单纯形表如下表所示 迭代 次数 基变量 cB x1 x2 x3 x4 x5 b -5 5 1..

已知下列线性规划问题 min f=5x1—5x2—13x3 约束条件:—x1+x2+3x3 ≤ 20 12x1+4x2+10x3 ≤ 100 x1,x2,x3≥0 将问题化为标准型之后求解,最优值为-100,最终单纯形表如下表所示 迭代 次数 基变量 cB x1 x2 x3 x4 x5 b -5 5 13 0 0 2 x2 5 -1 1 3 1 0 20 x5 0 16 0 -2 -4 1 20 cj-zj 0 0 -2 -5 0 (1)写出其最优基矩阵B及其逆矩阵B^(-1); (2)当b2由100变为60时,最优解有什么变化? (3)x1的系数列向量由(-1,12)T变为(0,5)T的时候,最优解有什么变化? (4)增加一个约束条件x1+2x2+x3 ≤ 30最优解有什么变化?

点击查看答案

第9题

设已知方程组Ax=b的精确解为x*=(100,-100)T。(1)计算条件数(2)取分别计算它的残余向量,本
设已知方程组Ax=b的精确解为x*=(100,-100)T。(1)计算条件数(2)取分别计算它的残余向量,本

已知方程组Ax=b的精确解为x*=(100,-100)T

(1)计算条件数

(2)取分别计算它的残余向量,本题的结果说明了什么问题?

点击查看答案

第10题

问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果,且对任意(u,V)∈E有u∈U或v∈U,

问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果,且对任意(u,V)∈E有u∈U或v∈U,就称U为图G的一个顶点覆盖.G的最小权顶点覆盖是指G中所含顶点权之和最小的顶点覆盖.

算法设计:对于给定的无向图G,设计一个优先队列式分支限界法,计算G的最小权顶点覆盖.

数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和m,表示给定的图G有n个顶点和m条边,顶点编号为1,2,...,n.第2行有n个正整数表示n个顶点的权.接下来的m行中,每行有2个正整数u和v,表示图G的一条边(u,v).

结果输出:将计算的最小权顶点覆盖的顶点权值和以及最优解输出到文件output.txt.文件的第1行是最小权顶点覆盖顶点权之和;第2行是最优解xi(1≤i≤n),xi=0表示顶点i不在最小权顶点覆盖中,xi=1表示顶点i在最小权顶点覆盖中.

点击查看答案

第11题

在欧氏空间C[-1,1]里,对于线性无关的向量组{1,x,x2,x3}施行正交化方法,求出一个规范正交组。

点击查看答案
下载APP
关注公众号
TOP
重置密码
账号:
旧密码:
新密码:
确认密码:
确认修改
购买搜题卡查看答案 购买前请仔细阅读《购买须知》
推荐 3个月
¥49.8
查看1200次答案
1个月
¥39.8
查看600次答案
1年
¥99.8
查看2000次答案
请选择支付方式
  • 微信支付
  • 支付宝支付
点击支付即表示同意并接受了《服务协议》《购买须知》
立即支付 系统将自动为您注册账号
已付款,但不能查看答案,请点这里登录即可>>>
请使用微信扫码支付(元)

订单号:

遇到问题请联系在线客服

请不要关闭本页面,支付完成后请点击【支付完成】按钮
遇到问题请联系在线客服
恭喜您,购买搜题卡成功 系统为您生成的账号密码如下:
重要提示:请勿将账号共享给其他人使用,违者账号将被封禁。
发送账号到微信 保存账号查看答案
怕账号密码记不住?建议关注微信公众号绑定微信,开通微信扫码登录功能
请用微信扫码测试