
(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:(II)在(I)中哪
(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知
在一组基下的矩阵为:
(II)在(I)中哪些变换的矩阵可以在适当的基下化成对角形?在可以化成对角形的情况,写出相应的基变换的过渡矩阵T,并验算T-1AT。

(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知
在一组基下的矩阵为:
(II)在(I)中哪些变换的矩阵可以在适当的基下化成对角形?在可以化成对角形的情况,写出相应的基变换的过渡矩阵T,并验算T-1AT。
第1题
设V是复数域上的n维线性空间,而线性变换在基ε1,ε2,...,εn下的矩阵是一若尔当块。证明:
1)V中包含ε1的-子空间只有V自身;
2)V中任一非零-子空间都包含εn;
3)V不能分解成两个非平凡的-子空间的直和。
第2题
设V是复数域上一个n维向量空间,σ是V的一个线性变换。令是定理1的那个准素分解,令W是V的一个在σ之下不变的子空间。证明:
这里Wi=W∩V,i=1,2,...,k。
第3题
设σ是复数域上三维向量空间V的一个线性变换,它关于V的一个基的矩阵是
求出σ的若尔当分解。
第4题
设f(α,β)是n维线性空间V上的非退化对称双线性函数,对V中一个元素α,定义V*中一个元素α*:α*(β)=f(α,β),β∈V。
试证:1)V到V*的映射α→α*是一个同构映射;
2)对V的每组基ε1,...,εn,有V的唯一的一组基ε1',...,εn'使f(εi,εj')=δij;
3)如果V是复数域上n维线性空间,则有一组基η1,...,ηn,使ηi=ηi',i=1,...,n。
第6题
是数域P上n维线性空间V的一个线性变换,证明:如果
在任意一组基下的矩阵都相同,那么
是数乘变换。
第7题
第8题
设是数域P上n维线性空间V的一个线性变换,证明:
1)在P[x]中有一次数≤n2的多项式f(x),使
2)如果,那么
这里d(x)是f(x)与g(x)的最大公因式;
3)可逆的充分必要条件是,有一常数项不为零的多项式f(x)使
第9题
第10题