
修改解装载问题的分支限界算法MaxLoading,使得算法在结束前释放所有已由EnQueue产生的结点.

第4题
装载问题描述如下:有一批共n个集装箱要装上一艘载重量为c的轮船,其中集装箱i的重量为wi找出一种最优装载方案,将轮船尽可能装满,即在装载体积不受限制的情况下,将尽可能重的集装箱装上轮船.
算法设计:对于给定的n个集装箱和轮船的载重量,计算最优装载方案.
数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和c,n是集装箱数,c是轮船的载重量.接下来的1行中有n个正整数,表示集装箱的重量.
结果输出:将计算的最大装载重量输出到文件output.txt.
第8题
A.求解目标不同,搜索方式相同
B.求解目标不同,搜索方式也不同
C.求解目标相同,搜索方式不同
D.求解目标相同,搜索方式也相同
第9题
印制电路板将布线区域划分成n×m个方格阵列(见图6-3(a).精确的电路布线问题要求确定连接方格a的中点到方格b的中点的最短布线方案.在布线时,电路只能沿直线或直角布线(见图6-3(b).为了避免线路相交,已布线了的方格做了封锁标记,其他线路不允许穿过被封锁的方格.
算法设计:对于给定的布线区域,计算最短布线方案.
数据输入:由文件input.txt给出输入数据.第1行有3个正整数n、m.k,分别表示布线区域方格阵列的行数、列数和封闭的方格数.接下来的k行中,每行2个正整数,表示被封闭的方格所在的行号和列号.最后的2行,每行也有2个正整数,分别表示开始布线的方格(p,q)和结束布线的方格(r,s).
结果输出:将计算的最短布线长度和最短布线方案输出到文件output.txt.文件的第1行是最短布线长度.从第2行起,每行2个正整数,表示布线经过的方格坐标.如果无法布线,则输出“NoSolution!".
第10题
印刷电路板将布线区域划分成n×m个方格阵列(见图6-3(a)).精确的电路布线问题要求确定连接方格a的中点到方格b的中点的最短布线方案.在布线时,电路只能沿直线或直角布线(见图6-3(b).为了避免线路相交,已布线了的方格做了封锁标记,其他线路不允许穿过被封锁的方格.
算法设计:对于给定的布线区域,计算最短布线方案.
数据输入:由文件input.txt给出输入数据.第1行有3个正整数n、m、k,分别表示布线区域方格阵列的行数、列数和封闭的方格数.接下来的k行中,每行2个正整数,表示被封闭的方格所在的行号和列号.最后的2行,每行也有2个正整数,分别表示开始布线的方格(p,q)和结束布线的方格(r,s).
结果输出:将计算的最短布线长度和最短布线方案输出到文件output.txt.文件的第1行是最短布线长度.从第2行起,每行2个正整数,表示布线经过的方格坐标.如果无法布线,则输出“NoSolution!”.