重要提示:请勿将账号共享给其他人使用,违者账号将被封禁!
查看《购买须知》>>>
首页 > 职业资格考试> 证券从业资格
题目内容 (请给出正确答案)
[主观题]

问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果,且对任意(u,V)∈E有u∈U或v∈U,

问题描述:给定一个赋权无向图G=(V,E),每个顶点问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果,且对任意(u,V)∈E有都有权值w(v).如果问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果,且对任意(u,V)∈E有,且对任意(u,V)∈E有u∈U或v∈U,就称U为图G的一个顶点覆盖.G的最小权顶点覆盖是指G中所含顶点权之和最小的顶点覆盖.

算法设计:对于给定的无向图G,设计一个优先队列式分支限界法,计算G的最小权顶点覆盖.

数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和m,表示给定的图G有n个顶点和m条边,顶点编号为1,2,...,n.第2行有n个正整数表示n个顶点的权.接下来的m行中,每行有2个正整数u和v,表示图G的一条边(u,v).

结果输出:将计算的最小权顶点覆盖的顶点权值和以及最优解输出到文件output.txt.文件的第1行是最小权顶点覆盖顶点权之和;第2行是最优解xi(1≤i≤n),xi=0表示顶点i不在最小权顶点覆盖中,xi=1表示顶点i在最小权顶点覆盖中.

问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果,且对任意(u,V)∈E有

答案
查看答案
网友您好,请在下方输入框内输入要搜索的题目:
拍照、语音搜题,请扫码下载APP
扫一扫 下载APP
更多“问题描述:给定一个赋权无向图G=(V,E),每个顶点都有权值w(v).如果,且对任意(u,V)∈E有u∈U或v∈U,”相关的问题

第1题

问题描述:给定一个无向图G=(V.E),设是G的顶点集.对任意,若u∈U且v∈V-U,就称(u,1)为关于顶点集U

问题描述:给定一个无向图G=(V.E),设是G的顶点集.对任意,若u∈U且v∈V-U,就称(u,1)为关于顶点集U的条割边.顶点集U的所有割边构成图G的一个割.G的最大割是指G中所含边数最多的割.

算法设计:对于给定的无向图G,设计一个优先队列式分支限界法,计算G的最大割.

数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和m,表示给定的图G有n个顶点和m条边,顶点编号为1,2,...,n.接下来的m行中,每行有2个正整数u和y,表示图G的一条边(u,v).

结果输出:将计算的最大割的边数和顶点集U输出到文件output.txt.文件的第1行是最大割的边数;第2行是表示顶点集U的向量x(1≤i≤n),x=0表示顶点i不在项点集U中,x=1表示顶点i在顶点集U中.

点击查看答案

第2题

问题描述:设计一个用回溯法搜索一般解空间的函数,参数包括:生成解空间中下一扩展结点的函数、
结点可行性判定函数和上界函数等必要的函数,并将此函数用于解图的m着色问题.

图的m着色问题描述如下:给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法,使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的.图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法.

算法设计:对于给定的无向连通图G和m种不同的颜色,计算图的所有不同的着色法.

数据输入:由文件input.txt给出输入数据.第1行有3个正整数n,k和m,表示给定的图G有n个项点和k条边,m种颜色.顶点编号为1,2,...,n接下来的k行中,每行有2个正整数u、v,表示图G的一条边(u,v).

结果输出:将计算的不同的着色方案数输出到文件output.txt.

点击查看答案

第3题

无向图(也简称图):一个图G是由点和边构成,记为G=(V,E)式中V、E分别G中点的集合和边的集合。()
点击查看答案

第4题

设有一个带权有向图G=(V,E),w是G的一个顶点,w的偏心距定义为:max(从u到w的最短路径长度其中的
设有一个带权有向图G=(V,E),w是G的一个顶点,w的偏心距定义为:max(从u到w的最短路径长度其中的

设有一个带权有向图G=(V,E),w是G的一个顶点,w的偏心距定义为:max(从u到w的最短路径长度其中的路径长度指的是路径上各边权值的和,将G中偏心距最小的顶点称为G的中心,试设计一个函数返回带权有向图的中心(如有多个中心,可任取其中之

参数表中的引用型参数biasdist返回最小偏心距的值,函数返回该中心的顶点号。

点击查看答案

第5题

所谓单目标最短路径(single-destinationshortestpath)问题是指在一个带权有向图G中求从各个顶
所谓单目标最短路径(single-destinationshortestpath)问题是指在一个带权有向图G中求从各个顶

点到某一指定顶点v的最短路径,例如,对于图8-47(a)所示的带权有向图,用该算法求得的从各顶点到顶点2的最短路径如图8-47(b)所示.

关于最短路径的读法以顶点0为例,在从顶点0到顶点2的最短路径上,顶点0的后继为顶点1(即path[0]=1),顶点1的后继为顶点3(即path[1]=3),顶点3的后继顶点为2(即path[3]=2).

编写一个算法,求解一个带权有向图的单目标最短路径问题。假设图G的顶点数据的类型为char,边上权值的数据类型为float。

点击查看答案

第6题

问题描述:给定一棵有向树T,树T中每个顶点u都有一个权w(u),树的每条边(u,v)也都有一个非负边长

问题描述:给定一棵有向树T,树T中每个顶点u都有一个权w(u),树的每条边(u,v)也都有一个非负边长d(u,v).有向树T的每个顶点u可以看作客户,其服务需求量为w(u).

每条边(u,v)的边长d(u,v)可以看作运输费用.如果在顶点u处未设置服务机构,则将顶点u处的服务需求沿有向树的边(u,v)转移到顶点v处服务机构所需付出的服务转移费用为w(u).d(u,v).树根处已设置了服务机构,现在要在树T中增设k处服务机构,使得整棵树T的服务转移费用最小.

算法设计:对于给定的有向树T,计算在树T中增设k处服务机构的最小服务转移费用.数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和k.n表示有向树T的边数,k是要增设的服务机构数.有向树T的顶点编号为0,1,...,n.根结点编号为0.在接下来的n行中,每行有表示有向树T的一条有向边的3个整数.第i+1行的3个整数wi、vi、di,分别表示编号为i的顶点的权为wi,相应的有向边为(i,vi),其边长为di.

结果输出:将计算的最小服务转移费用输出到文件output.txt.

点击查看答案

第7题

设图G顶点数据的类型是整型,边上权值的数据类型是浮点型,编写一个算法,不使用最小堆实现Prim算法,从顶点v开始构造带权有向图的最小生成树.

点击查看答案

第8题

本题给出二部图(bipartitegraph)的概念。设G=(V,E)是一类无向图,可以把它们的顶点划分为两个互
本题给出二部图(bipartitegraph)的概念。设G=(V,E)是一类无向图,可以把它们的顶点划分为两个互

不相交的子集A和B=V-A,并且这两个子集具有下列性质:

(a)A中任何两个顶点在G中都不是相互邻接的;(b)B中任何两个顶点在G中都不是相互邻接的。例如,图8-34就是二部图。对V(G)的一个划分可能是A=(0,3,4,6)和B=(1,2,5,7).

(1)试编写一个算法,判断图G是否是二部图。如果图G是二部图,则你的算法应当把项点划分成为具有上述性质的两个互不相交的子集A和B。证明:当用邻接表表示图G时,这个算法的复杂度可以做到O(n+e)。其中n是图G的顶点个数,e是边数。

(2)证明:任何-棵树都是二部图

(3)证明:当且仅当图G不包含奇数条边的回路时.它是二部图。

点击查看答案

第9题

设G=<V,E>为无环的无向图则G是().A.完全图B.零图C.简单图D.重图

设G=<V,E>为无环的无向图则G是().

A.完全图

B.零图

C.简单图

D.重图

点击查看答案

第10题

无向图G=(V,E),其中V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进
无向图G=(V,E),其中V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进

行深度优先搜索,得到的顶点序列是()。

A、a,b,e,c,d,f

B、a,c,f,e,b,d

C、a,e,b,c,f,d

D、a,e,d,f,c,b

点击查看答案
下载APP
关注公众号
TOP
重置密码
账号:
旧密码:
新密码:
确认密码:
确认修改
购买搜题卡查看答案
购买前请仔细阅读《购买须知》
请选择支付方式
微信支付
支付宝支付
点击支付即表示你同意并接受《服务协议》《购买须知》
立即支付
搜题卡使用说明

1. 搜题次数扣减规则:

备注:网站、APP、小程序均支持文字搜题、查看答案;语音搜题、单题拍照识别、整页拍照识别仅APP、小程序支持。

2. 使用语音搜索、拍照搜索等AI功能需安装APP(或打开微信小程序)。

3. 搜题卡过期将作废,不支持退款,请在有效期内使用完毕。

请使用微信扫码支付(元)

订单号:

遇到问题请联系在线客服

请不要关闭本页面,支付完成后请点击【支付完成】按钮
遇到问题请联系在线客服
恭喜您,购买搜题卡成功 系统为您生成的账号密码如下:
重要提示:请勿将账号共享给其他人使用,违者账号将被封禁。
发送账号到微信 保存账号查看答案
怕账号密码记不住?建议关注微信公众号绑定微信,开通微信扫码登录功能
请用微信扫码测试
优题宝