
设图G是一个连通图、编写一个算法,寻找从项点v到顶点v,的所有简单路径。

第3题
一次。
(l)试证明一个有向图存在欧拉回路的充要条件是该图必须是强连通的且每一个顶点有相同的人度与出度;
(2)设图中的顶点数为n,试描述有向图的数据结构并编写一个时间复杂性为O(n)的算法,在有向图中查找一条欧拉回路(如果它存在).
第4题
不相交的子集A和B=V-A,并且这两个子集具有下列性质:
(a)A中任何两个顶点在G中都不是相互邻接的;(b)B中任何两个顶点在G中都不是相互邻接的。例如,图8-34就是二部图。对V(G)的一个划分可能是A=(0,3,4,6)和B=(1,2,5,7).
(1)试编写一个算法,判断图G是否是二部图。如果图G是二部图,则你的算法应当把项点划分成为具有上述性质的两个互不相交的子集A和B。证明:当用邻接表表示图G时,这个算法的复杂度可以做到O(n+e)。其中n是图G的顶点个数,e是边数。
(2)证明:任何-棵树都是二部图
(3)证明:当且仅当图G不包含奇数条边的回路时.它是二部图。
第5题
若AOE网络的每一项活动都是关键活动。令G是将该网络的边去掉方向和权后得到的无向图。
(1)如果图中有一条边处于从开始顶点到完成顶点的每一条路径上,则仅加速该边表示的活动就能减少整个工程的工期。这样的边称为桥(bridge)。证明若从连通图中删去桥,将把图分割成两个连通分量。
(2)编写一个时间复杂度为O(n+e)的使用邻接表表示的算法,判断连通图G中是否有桥,若有。输出这样的桥。
第7题
设G是一个有n个顶点的有向图,从顶点i发出的边的最大费用记为max(i).
(1)证明旅行售货员回路的费用不超过.
(2)在旅行售货员问题的回溯法中,用上面的界作为bestc的初始值,重写该算法,并尽可能地简化代码.
第8题
为,这里的路径长度是指路径中所含的边数。编写一个算法求T的直径、并分析算法的时间复杂度。
第9题
点到某一指定顶点v的最短路径,例如,对于图8-47(a)所示的带权有向图,用该算法求得的从各顶点到顶点2的最短路径如图8-47(b)所示.
关于最短路径的读法以顶点0为例,在从顶点0到顶点2的最短路径上,顶点0的后继为顶点1(即path[0]=1),顶点1的后继为顶点3(即path[1]=3),顶点3的后继顶点为2(即path[3]=2).
编写一个算法,求解一个带权有向图的单目标最短路径问题。假设图G的顶点数据的类型为char,边上权值的数据类型为float。