
设A是P上一个m级矩阵,定义Pmxn上一个二元函数f(X,Y)=Tr(X'AY),X,Y∈Pmxn,其中T
设A是P上一个m级矩阵,定义Pmxn上一个二元函数f(X,Y)=Tr(X'AY),X,Y∈Pmxn,
其中Tr是矩阵的迹。
1)证明:f(X,Y)是Pmxn上的双线性函数;
2)求f(X,Y)在基下的度量矩阵,(Eij表示i行j列的元素为1,而其余元素全为零的mxn矩阵。)

设A是P上一个m级矩阵,定义Pmxn上一个二元函数f(X,Y)=Tr(X'AY),X,Y∈Pmxn,
其中Tr是矩阵的迹。
1)证明:f(X,Y)是Pmxn上的双线性函数;
2)求f(X,Y)在基下的度量矩阵,(Eij表示i行j列的元素为1,而其余元素全为零的mxn矩阵。)
第1题
设V是数域F上一切mxn矩阵所构成的向量空间。C是一个取定的mxm矩阵,定义证明:f是V上一个双线性函数,f是不是对称的?
第2题
令σ是一个n次置换。
设A=(aij)是数域F上一个nxn矩阵,定义
就是对A的行作置换σ所得的矩阵。令∑n={σ(I)|σ∈Sn},其中I是nxn单位矩阵。证明∑n作成GL(n,F)的一个与Sn同构的子群。
第3题
设{α1,α2,···,αn}是F上n维向量空间V的一个基。A是F上一个nxs矩阵。令
证明
第4题
设A是复数域C上一个n阶矩阵。
(i)证明:存在C上n阶可逆矩阵T,使得
(ii)对n作数学归纳法证明,复数域C上任意一个n阶矩阵都与一个上三角形矩阵
相似,这里主对角线以下的元素都是零。
第5题
第6题
设A是复数域C上一个n阶矩阵,λ1,λ2,···,λn是A的全部特征根(重根按重数计算)。
(i)如果f(x)是C上任意一个次数大于零的多项式,那么f(λ1),f(λ2),···,f(λn)是f(A)的全部特征根;
(ii)如果A可逆,那么λi≠0,i=1,2,...,n,并且是A-1的全部特征根。
第8题
判别下面所定义的变换,哪些是线性的,哪些不是:
1)在线性空间V中,其中α∈V是一固定的向量;
2)在线性空间V中,其中α∈V是一固定的向量;
3)在P3中;
4)在P3中;
5)在P[x]中;
6)在P[x]中,其中x0∈P是一固定的数;
7)把复数域看作复数域上的线性空间,
8)在Pnxn中,,其中B,C∈Pnxn是两个固定的矩阵。
第9题
令A是数域F上一个n阶反对称矩阵,即满足条件AT=-A。
(i)A必与如下形式的一个矩阵合同:
(ii)反对称矩阵的秩一定是偶数;
(iii)F上两个n阶反对称矩阵合同的充要条件是它们有相同的秩。